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SUMMARY

The prosperity of Internet results in a workflow executing engine’s performance instability due to the
request congestion for a short period of time. This paper proposes a peak load control (PLC) based
orchestration system that can stably execute hybrid services. The PLC mechanism uses the delay time
algorithm for controlling a BPEL engine’s heavy peak load caused by the request congestion for a short
period of time. In order to prove the stable performance of the PLC-based orchestration system, we
analyze the proposed delay time algorithm. According to our experimental results, the proposed delay
time algorithm can stably execute structured activities of WSBPEL specification in heavily overloaded
state after the saturation phase and has an effect on controlling the states of peak load. In this paper, we
also describe a hybrid service architecture model that can represent both Web Services and existing EAs
as same type of services. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The composition of service to form new, aggregate services is the domain of Web Services choreog-
raphy [1-3]. Choreography languages, such as WSBPEL [4] and BPML [5], define an interoperable
integration model that should facilitate the expansion of automated process integration in both the
intra-corporate and the business-to-business spaces [6]. However, Web Services-based approaches
toward business process integration consider only Web Services as targets for integration [7,8].
Because there is no means to represent existing enterprise applications as a business partner of
WSBPEL business process, existing enterprise applications cannot be represented in a business
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process when a business process is described by WSBPEL. Many existing enterprise applications
that have been developed by RMI, EJB, CORBA, etc. are not taken into account for a WSBPEL-
based service composition. Some mechanisms are required for representing both Web Service and
existing enterprise applications as same type of services.

The prosperity of Internet results in instable performance due to the request congestion for
a short period of time [9,10]. Moreover, the grid workflow systems generally require fixed-time
constraints [11]. Accordingly, a workflow execution engine in grid environments also requires some
mechanisms for automatically solving the temporary services congestion. The peak load control
(PLC) is the mechanism for preventing thrashing in transaction processing system by controlling
the number of concurrently running transactions [12]. The term thrashing generally describes a
phenomenon where an increase of the load results in decrease of throughput (or another-related
performance measure). Usually, we can distinguish a load-throughput function into three phases:
underload, saturation, and overload. The underload phase is the state of light load with sufficient
resources available and the throughput grows almost nearly to make use of possible parallelism
in the system. The saturation phase is the state that reaches the highest throughput. When the
finite capacity of the system becomes effective, the throughput function flattens out. After the
saturation phase, further increasing load will not lead to an asymptotic approach to the saturation
bound but sometimes will cause a sudden drop in throughput. In other word, the phenomenon
of thrashing happens at overload phase. Generally speaking, at least the two following classes of
factors make an effect on the overload: algorithmic overload (e.g. list operations, sorting, searching,
etc.) and insufficient resource capacity [13]. Mutual impediments are also known to stem from
contention for either physical resource (memory, processor) or logical resource (data granules).
The former is usually called resource contention (RC), the latter is data contention (DC). Knowing
that thrashing threatens in workflow execution engines in grid environments, we have to think about
countermeasures to limit the load to prevent the system from overload.

In this paper, we describe the PLC-based orchestration system that can deploy and access the
hybrid services represented by the proposed hybrid service architecture model. We use the delay time
mechanism for the PLC. The mechanism calculates a delay time for each working thread at regular
intervals. In order to calculate the delay time, the following factors are considered: over speed of
transaction, the baseline delay, and slope of a download curve. In order to prove stable performance
of the proposed mechanism, we apply the mechanism to the hybrid orchestration system. According
to our experimental results, the proposed delay time algorithm can stably control the heavy overload
after the saturation point and has an effect on controlling peak load.

This paper also proposes the hybrid service architecture model that can represent both Web
Services and legacy services as partners in WSBPEL without the interoperability problem generated
by extending WSDL. The hybrid architecture model uses two refinement phases (mapping phase,
completion phase) for making the hybrid service architecture model from legacy architecture model,
such as RMI architecture model, CORBA architecture model. During mapping phase, the same
concepts are mapped between the legacy system architecture and the Web Service architecture.
However, there are missing concepts that exist in the Web Service Architecture but do not exist in
legacy architecture. During completion phase, similar or new concepts are made and mapped into
the Web Service architecture for the missing concepts.

This paper is structured as follows. The next section presents the related work. Section 3 presents
the proposed hybrid services architecture model. Section 4 describes the PLC-based hybrid service
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orchestration system and the delay time-based PLC mechanism. Section 5 shows the experimental
results of the mechanism. Finally, we conclude in the last section.

2. RELATED WORKS

In order to represent both Web Service and existing enterprise applications as same type of services,
many recent WSBPEL vendors have provided Web Service-based orchestration system products,
such as the Oracle BPEL Process Manager, the IBM WebService Business Integration Server
Foundation, the ActiveBPEL Engine, and the Twister. However, some of them only support Web
Service. Another does not use WSBPEL specification but its own specification for legacy service
composition.

Currently, JOpera [14] and enterprise service bus (ESB) are proposed for legacy service compo-
sition. JOpera provides a rapid service composition tool offering a visual language and autonomic
execution platform for building distributed applications out of reusable services, which include
but are not strictly limited to Web services [15]. JOpera helps you to deal with heterogeneity.
The ESB provides a new way to build and deploy enterprise service-oriented architectures (SOA).
The ESB supports platform-neutral connection to any technology in the enterprise, e.g. Java, .Net,
mainframes, and databases. The purpose of them is not for service composition but application in-
tegration. So, they generally focus in adapters to enable integration with a wide variety of enterprise
applications. Therefore, they cannot represent legacy service as partners in WSBPEL. Web Services
invocation framework (WSIF) is a simple Java API for invoking Web Services, no matter how or
where the services are provided. WSIF enables developers to interact with abstract representations
of Web Services through their WSDL descriptions instead of working directly with simple object
access protocol (SOAP) APIs, which is the usual programming model. With WSIF, developers can
work with the same programming model regardless of how the Web Service is implemented and
accessed. However, WSIF needs to extend WSDL of each legacy service in order to adapt the legacy
services like RMI, EJB, and JMS. The extension of WSDL brings the interoperability problem to
other applications except WSIF. So, we describe legacy services as another description format like
RMI service description (RMISD).

In order to prevent thrashing in overload phase, the fixed upper bound of the maximum number
of transaction, analytical models [14,16,17], adaptive load control mechanism [18], and concurrent
programming [19-21] have been suggested. Several solutions also are compared [17]: do nothing,
fixed upper bound, theoretically derived ‘rule of thumb’. The first solution relies on self-regulating
market mechanism. If the service (throughput, response time) becomes worse, fewer people want
to use it. The second solution limits the maximum number of concurrent transactions. However,
when the transaction load is constant and the value is chosen appropriately, this solution may work.
The third solution uses analytical models which suggest some conditions that must be satisfied to
prevent thrashing. Tay et al. [14], for example, claim that K2n/D should be less than 1.5 where
K is the number of data items accessed by each transaction, n is the concurrency level, and D is
the database size. Iyer [16] suggests then the mean number of conflicts per transactions should not
exceed 0.75.

In contrast with existing load control mechanisms, our approach does not control the number of
concurrent active threads but the delay time of each active thread for solving thrashing phenomenon.
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3. HYBRID SERVICE ARCHITECTURE MODEL

In this section, we propose the hybrid service architecture model that represents legacy services, such
as RMI objects and EJB components, as a partner in WSBPEL. The hybrid service architecture is the
re-constructed architecture made by refining legacy system architectures in view of the Web Service
architecture. The Web Service architecture can be categorized into two kinds of conceptual model
[22]: service model and message model. The service model describes main concepts in service-
oriented view. A service has one or more service descriptions. A service description has one or more
service addresses and service interfaces for a service. A service implements the service interfaces and
service requestor uses the services provided by service providers. A service interface has one or more
operations. The message model represents messages interacting between services. An operation has
zero or more messages and a message has both a message name and one or more message part.
The message part is used for overriding methods. A message part refers to a message type.

In order to build the hybrid service architecture from a specific legacy architecture model, two
refinement phases are needed: mapping phase and completion phase. During the mapping phase, the
same concepts are mapped between the legacy system architecture and the Web Service architecture.
However, there are missing concepts that exist in the Web Service Architecture but do not exist in
the legacy architecture. During the completion phase, similar or new concepts are made and mapped
into the Web Service architecture for the missing concepts. Figure 1 is the conceptual mapping
between the Web Service and Java RMI architecture during two phases.

Mapping Phase Completion Phase
WebService Architecture Java RMI Architecture
Service — Remote Object
Service Interface Remote Interface
Service Description
(WSDL) N/A RMISD
Service Address Implication Service URL

Service Description ServiceDescription

Implication

Address URL
Operation Method
Message Serialized Object

Message Name Serialized Name

Message Part N/A Method Signature

Message Type Messag&::;ameter

Figure 1. Conceptual mapping during two phases.
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In order to represent RMI objects as Web Services in WSA and WSDL, the RMI architecture
model needs to be refined in view of the Web Service architecture model. For this refinement, the
conceptual mapping between two architectures is needed. A remote object, remote interface, method,
method name, method parameter types of the Java RMI architecture are mapped to a service, service
interface, message, message name, and message type of the Web Service architecture, respectively.
However, the concepts of the service description and message part in the hybrid service architecture
do not exist in the Java RMI architecture. The service address is the URL for accessing a Web
Service and the service description address is the URL for accessing a WSDL document. In the Java
RMI architecture, the service address and service description address are not explicitly described.
In order to map the Java RMI architecture to the Web Service architecture, the message part and
service description need to be redefined and the service address and service description address
also need to be explicitly specified in hybrid service architecture during the completion phase.

During the completion phase, the RMISD, ServiceURL, ServiceDescriptionURL, Method Sig-
nature of the Java RMI architecture are mapped to a WSDL, service address, WSDL address,
and Message Part of the Web Service architecture, respectively. The role of message part in the
Web Service architecture is generally similar to the role of overriding methods in the Java RMI
architecture. In other words, the message part is used to differentiate the overridden methods in
the Java RMI architecture. So, the format of the method signature is used for the role of mes-
sage parts. The method signature format is as follows: ‘return type; method name; (parameter
types); (variable names)’. In Java RMI architecture, because such a service description like the
WSDL in the Web Service architecture does not exist, we create the RMISD document. The
RMISD describes information about RMI-based services. Let us assume shippingPT RMI remote
interfaces of Figure 2 for easy description of the message part and RMISD. According to the
previous method signature format, the method signature of the shippingPT interface is the follow-
ing: ‘String;requestShipping;(String);(shipping)’. The ServicelnterfaceName element describes the
name of the shippingPT Java RMI remote interface. The MethodSignature element also describes
the requestShipping method signature. The ServiceDescriptionURL element has an URL for finding
a RMISD of the shippingPT RMI service and the ServiceURL is used for accessing the shippingPT
RMI service. The RMISD file extension is used to represent that the service is not implemented by
Web Services but Java RMI objects.

After mapping the Java RMI architecture to the Web Service architecture, a Java RMI ob-
ject can be represented as a service in WSBPEL business process. The service representation in
WSBPEL business process can be categorized into two following methods: WSDL-based service
representation and RMISD-based service representation. Figure 3 shows the difference between the
WSDL-based service representation and the RMISD-based service representation.

The WSDL-based service representation represents a Java RMI object as a service in WSDL
document. The RMISD-based service representation represents a Java RMI object as a service in a
RMISD document. A WSBPEL process represents all partners and interactions with these partners
in terms of abstract WSDL interface (i.e. portTypes and operations). In the WSDL-based service
representation, the partnerLink of the WSBPEL document refers the Role in the PartnerLinkType
of the WSDL document. In the WSDL document, an URL of a XML namespace definition is
used for referring the service interfaces of RMISD. The Role of the PartnerLinkType refers to the
ServicelnterfaceNames of another RMISD document.

Figure 4 shows the WSDL-based service representation.
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public interface shippingPT extends Remote §
String request Shipping(String shipping) throws Remote Exception, Order Fault Type;

}

public interface purchaseOrderPT extends Remote §
hoolean sendPurchaseOrder(String customerInfo, int productCode, int count,
String address) throws RemoteException;

shippingPT RMISD
<{?xml version="1.0" 2>
<ServiceDescriptor targetNamespace="htp://manufacturing_orgfrmi
Ipurchase/shipping">

{ServicelnterfaceName>
shipping.shippingPT
{/ServicelnterfaceName >
{Servicelnterface>
requestShipping: java.lang.String: shipping
</Servicelnterface>
<ServicelnterfaceURL>
css:{/subdueit.org/rmi/shipping.jar
{/ServicelnterfaceURL>
<{ServiceURL>
rmi:/flocalhost{shipping
</ServiceURL>
<fServiceDescriptor>

Figure 2. RMISD example for shippingPT Java RMI interface.

Two services are represented by two PartnerLinkType elements: the purchasingLT and ship-
pingLT. The purchasingLT is a Web service and the shippingLT is a Java RMI object. In case of the
purchasingLT, the description URL is identified by the namespace attribute in the definition element
(i.e. http://manufacturing.org/wsdl/purchase.wsdl) and the name of service interface is identified
by the name attribute (i.e. pos: purchaseOrderPT) of the portType child element of the partnerLink-
Type in WSDL. In case of the shippingLT, the description URL of a shipping service is identified by
the namespace attribute in the definition element (i.e. rmi://manufacturing.org/rmi/ship.rmisd) and
the name of service interface is identified by the name attribute (i.e. sos:shipping.ShippingOrder)
of the portType of the partnerLinkType in WSDL.

In contrast to the WSDL-based service representation, in the RMISD-based service representa-
tion, the roles of the PartnerLinkeType refer to the ServicelnterfaceNames of the same RMISD
document. Figure 5 shows the WSDL-based service representation. Three services are repre-
sented by three PartnerLinkType elements: the purchasingPT, shippingPT, and shippingRequstor.
The purchasingPT RMI object is described as a service in this RMISD document. The ship-
pingPT and shippingRequstor RMI objects are described as services in another RMISD document.
So, the URL of namespace definition refers to RMISD files. The PartnerLinkType of the ship-
pingPT has two following role elements: the ShippingService and the ShippingRequestor. The role
name of the ShippingService has the shipping:shippingPT portType. The portType identifies the

Copyright © 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:361-376
DOI: 10.1002/cpe



A PEAK LOAD CONTROL-BASED ORCHESTRATION SYSTEM 367

WSDL-Based Service Rep'r-esentation

WSDL Document
Namespace
WSBPEL Document Definition import RMISD file
PartnerLinks PartnerLinkType RMISD Document
— m— \
. Tefer rojes refer 1
PartnerLink ) Role 13ervicelnterfaceName

RMISD-Based Service Representation

WSBPEL Document RMISD Document
PartnerLinks PartnerLinkType

—— 1y
L refer
| PartnerLink refer roles Role ServicelnterfaceName

S e R

T

e O

Figure 3. Two service representations in WSBPEL business process.

<?xml version="1.0"3%>
<definitions name="SyncHelloWorldd”
xmlns:pos="http://manufacturing.org/wsdl,/purchase.wsdl"
xmlns: sos="rmi://manufacturing.org/rmi/ship. rmisd"
e
<! cmitted >
<plnk:partnerLinkType name="purchasingLT">
<plnk:role name="purchaseService">
<plnk:portType name="pos:purchase0rderPT" />
</plnk:irole>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="shippingLT">
<plnk:role name="shippingSarvice">
<plnk:portType name="gos:SfhippingOrder” />
</plnk:role>
</plnk:partnerLinkType>

</definitionss

Figure 4. WSDL-based service representation.

shipping service described by the ship.rmisd document. The shipping.shippingCallbackPT port-
Type identifies the purchase order service described in the purchaseOrder.rmisd. The portType
name in the partnerLinkType needs to be equal to the value of the ServicelnterfaceName of the
RMISD document.
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<? XML version="1.0" %>
<servicedecripteor mmlng:plinke="http://manufacturing.org/purchse0sderlT
smlns:sos="rmi://manufacturing. org/rmi/ship. rmisd"
xmlne :pka="rmi://manufacturing. org/rmi/shipCallBack . rmish>
<ServicelnterfaceNama>
plinke.purchasebrderPT
</8erviceInterfaceName>
<Servicelnterface>
sendPurchaseOrder ; java.lang.String, int, int, java lang,String; customeInfo,
productCode, count , address

</8ervicelnterface>
<ServicelnterfaceURL>
rmi: //localhost/purchase0rderLT. jar
</erviceInterfacelRL:>
<ServiceURL>
rmi: //localhest/purchasedrder
</ServicelURL>
<plink: partnerLinkType name="purchaseFT">
<plink:role name="purchaseService">
<plink:portType name="plinke.purchase0rderPT >
</plink:rolex>
</plinke: partnerLinkType>
<plink: partnerLinkType name="shippingPT">
<plink:role name="ghippingService">
<plink:portType name="sos.shippingPT">
</plink:role>
<plink:rele name="shippingRequestor™>
<plink:portType name="pks.shippingCallbackPT">
</plink:role>
</plinke: partnerLinkType>
<fserumedecrlpmr>

Figure 5. RMISD-based service representation.

4. PLC-BASED ORCHESTRATION SYSTEM

In hybrid service architecture model, we propose the remodeling method for representing both Web
Services and legacy services as partners in WSBPEL processes. In this chapter, we present the PL.C-
based hybrid service orchestration system that can stably execute hybrid services by the proposed
hybrid service architecture model. Figure 6 is the software architecture of the orchestration system.
The orchestration system is composed of the following main modules: the BPEL Engine, Hybrid
Service Toolkit, Context Sharing Server, and Admin Console. The BPEL Engine is a workflow
engine for executing business processes described in WSBPEL. Service providers use the Hybrid
Service Toolkit for creating and deploying hybrid services to a service container. Service consumers
use the Hybrid Service Toolkit for invoking the hybrid services. The Context Sharing Server is
responsible for managing the state of the business process instance and performing authentication
and transaction. The state of context sharing server is also shared by many hybrid orchestration
systems. The Admin Console manages the hybrid orchestration system and the Context Sharing
Servers. The Hybrid Service Toolkits supports the proposed hybrid service architecture.

Figure 7 is a class diagram of the Hybrid Service Toolkit. The HSTKFactory generates three
following factory objects: ServiceDescriptionReader, ServiceGenerator, and ServiceDeployer. The
three factory objects are created for legacy services, such as RMI, EJB, and CORBA. The three
factory objects are similar to the adapters of the Hybrid Service Toolkit in Figure 7. In other words,
clients invoke the hybrid services which are generated and deployed by the Hybrid Service Toolkit.
The hybrid services cause the BPEL Engine to execute the business processes of WSBPEL. The
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Hybrid Services Hybrid Orchestration System iHybrid Services
WebService —— WebService WebService : WebService
Service Adapter Adapter : Service
Z g E
e provi BPEL ess
o VY em 22 Engine . : EJB
3 § . EJB S gl (Hybrid EJB : i
E Service Adapter ; g Omh:straﬁor Adapter ; Service
3| Server) )
Other Other Legacy Other Legacy Other
Service H Service
share Context Information manage Urchestcafion System
deploy
BPEL
Context Sharing Document Admin
Server Console
Orchestration Orchestration Orchestration
System System System

Figure 6. Software architecture of the orchestration system.

BPEL Engine uses the Hybrid Service Toolkit for accessing hybrid services. The ServiceDescrip-
tionReader reads the hybrid service description remodeled by the hybrid service architecture and
generates the ServiceDescription object. The ServiceGenerator generates a Service object using
the ServiceDescription parameter object. A service consumer can consistently use hybrid services
by invoking the hook method of the Service object. The ServiceDeployer generates the hybrid ser-
vices described in the ServiceDescription and deploys the hybrid services into a service container.
The ServiceDeployer uses the Callback object to handle input parameters when deploying hybrid
services.

Figure 8 is the software architecture of the BPEL Engine. The Process Manager executes WS-
BPEL processes and supports many kinds of activities described by WSBPEL standard specification.
The Alarm Service is responsible for executing processes at the described time. The Lock Service
shares the information of process locking among the Context Sharing Servers. The Message Service
receives messages through the hybrid service toolkit from clients and generates the Caller object
for accessing hybrid services. The Worker Service manages many threads used by the orchestration
system.

The Admin Console uses the Remote Service for accessing the BPEL Engine. The Remote Service
is the boundary service for controlling the BPEL Engine from the Admin Console. The CSS Service
is responsible for communicating with the Context Sharing Server. The Context Sharing Server is
responsible for managing the consistent state of business processes in multiple orchestration system
environments. In view of the qualities of software architecture, the BPEL Engine is the scalable
and reliable system using the Context Sharing Server.

In WSBPEL specification, there are many structured activities, such as sequence, switch, while,
flow, and pick. The structured activities prescribe the order in which a collection of activities take
place and can be nested and combined in arbitrary ways. The hybrid service orchestration system
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HSTK Factory

SimportAdapter{file : File)
“deportAdapter{type : String)
“getServiceDescriptionReader{type : StriL..
“getServiceGenerator{type : String)
“getServiceDeployer{type : String)
YgetServiceType(extension ; String)

- L‘\\‘
R s s
. n* o
$tnic:gm::;r;eMar Sl ENNGDY
' : “deploy(sd : ServiceDescription, calll..
) " enerate(sd:ServiceDescription, url:StriL.. eploy( ption,
*readurl: URL) : ServiceDescription . ! : $undeploy(sd : ServiceDescription)
!' ’
|I
rndi 0
<<Interface>>
ServiceDescription G- lo.s callback =
LU ‘. -
SgetTargetNamespace() “'S'“",’“” <Interface>> |
SgetServicelnterfaceName() ket CallBack
YgetServiceinterfaceURL() . . :
:ﬂ.tsmwm"fmc. Yinvoke(methodMame : String, params ; Ob... Sinvoke(params:Map){) : Object |
getServiceParameterNames() |
YgetServiceURL()

Figure 7. Design of the hybrid service toolkit.

uses Worker threads for executing those complex activities. The Worker Service of Figure 8 manages
the Worker threads.

Figure 9 shows how to use the Worker threads and how to apply them in order to execute structured
activities of WSBPEL specification. The Worker Service gets a Worker thread from the Worker
Thread Pool. The Worker thread gets delay time from the WorkerManager. After the Worker thread
sleeps for the delay time calculated by the WorkerManager, the Worker thread executes structured
activities sequentially or concurrently. Finally, the Worker increments the number of transaction
processed by the Worker thread.

Figure 10 is the pseudocode for the WorkerManager’s delay time algorithm. After sleeping during
interval time, the WorkerManager gets the number of transactions processed by all Worker threads
and the maximum transaction processing speed configured by a system administrator. And then,
the WorkerManager calculates the transaction per milliseconds (TPMS) by dividing the number of
transactions by the maximum transaction processing speed and calculate the over speed between
the TPMS and the maximum transaction processing speed. If the value of the over speed is greater
than zero, the system is considered as an overload state. Accordingly, it is necessary to control the
overload state. On the contrary, if the value of the over speed is zero or less than zero, it is not
necessary to control the transaction processing speed.
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BPEL Engine
Alarm Service Lock Service Message Service Worker;ervice

Process Manager
Remote Service CSS Service
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deploy
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share context information
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Figure 8. Software architecture of the BPEL engine.
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Figure 9. Worker threads for executing complex structured activities.
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1.while run_flag equals “true” do
get interval time for checking load
sleep for the interval time
get the number of transactions processed during the interval time
get the configured maximum speed
TPMS := number of transactions / interval time
over speed = TPMS - maximum speed
If over speed >0 then
8.1 get the previous delay time
8.2 if previous delay time = 0
8.2.1 previous delay time := 1
8.3 get number of active worker thread
8.4 new delay time:= over speed / number of active worker * previous delay time
9 else
9.1 get current delay
9.2 if current delay > 6
9.2.1 new delay time := cument delay * £
9.3 else
9.3.1 new delay time := 0
9.4 endif
10. end if
11.end while

QO NO AW

Figure 10. Pseudo code for WorkerManager’s delay time algorithm.

For controlling the overload state, this paper uses the delay time algorithm of the WorkerManager.
OS(#;+1) is the over speed between the transaction processing speed (TPMS(#;41)) at the time #;
and the configured maximum transaction processing speed (MTPS). The OS(#;+) is calculated by
applying formula (1). If the over speed OS(#;4+1) is greater than zero, formula (2) is used for getting
a new delay time D(#;+1) at the time #;41. The N (#;41) of formula (2) means the number of active
Worker threads at the time ;1 and D(t;) means the delay time at the time #;. If the D(¢;) is zero,
D(t;) must be set one:

0S(ti11) = TPMS(fi11) — MTPS )
D(ti11) =08 11)/N(tiv1) * D(1;) (2)

If the OS(#;+1) of formula (1) is zero or less than zero, a new delay time D(#; 1) at the time
ti4+1 is differently calculated according to the delay time D(#;) at the time ¢#;. If the D(t;) at the
time #; is greater than the baseline delay d, the D(¢#;+1) is calculated by applying formula (3). On
the contrary, if the D(t;) is same or less than the baseline delay, D(¢;41) is set zero. The baseline
delay is used for preventing repetitive generation of the over speed generated by suddenly dropping
the next delay time in previous heavy load state. When the system state is continuously in state of
heavy load for a short period of time, it tends to regenerate the over speed to suddenly increment
the delay time at the time #; and then suddenly decrement the delay time zero at the time #; 1.

The baseline delay is the previous delay time at the time #; that can decide whether next delay
time at the time #; is directly set zero or not. The § percent of formula (3) decides the slope of a
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downward curve. However, if the delay time at the time ¢#; is lower than the baseline delay. The
new delay time at the time #;11 is set zero. Accordingly, when a system state changes from the
heavy overload at the time #; to the underload at the time #; 4|, The gradual decrement by the /3
percent prevents the generation of repetitive over speed caused by abrupt decrement of the next
delay time:

D(ti+1) =D(ti) * p 3)
D(tiy1) =0 “)

5. EXPERIMENTAL RESULTS

In order to prove performance stability of the PLC-based hybrid service orchestration system, we
analyze the delay time algorithm of the WorkerManager. As for load generation, the LoadRunner
8.0 tool is employed. Transactions per second (TPS) is used as a metric for performance analysis.
As the purpose of performance experiment is not to compare with other system but performance
stability, we use a RMI-based hybrid service which inquires an emp table of oracle 9i database.
The three following activities are executed in sequence: receive activity, invoke activity, and reply
activity. The invoke activity invokes the RMI-based hybrid service. The maximum speed, ¢ and f3
for delay time algorithm are configured 388, 100, and 0.75 ms, respectively. The data size received
from the emp table is 475 bytes. The number of concurrent users is 300 and the value of think time
is 0. Maximum TPS of the proposed integration system is 327 TPS and average TPS is 325.
Figure 11 is a comparison of stability of performance between the orchestration system with-
out the PLC and the proposed PLC-based orchestration system. The orchestration system without
the PLC does not use the PLC mechanism but the proposed system uses the mechanism. Un-
til concurrent user 220, two systems are similar in view of TPS and the maximum TPS of both
systems is 327. However, as a number of concurrent users are more than 220 users, both systems

. =
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[ Timrestes
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LT T R R ) (S T T T S . I .1 D 0 B 40 L TR TP T T . 1
R I A SO S G . St S

Concurient iaare [-=- Orchestration System Without PLC]

| = Qrchestration System with PLC

Figure 11. Comparison of performance stability.
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show different symptoms. The proposed PLC-based system holds 325 TPS on the average due to
the PLC mechanism. However, the TPS of the orchestration system without the PLC goes down
until concurrent users reach 520. As the concurrent users go over 520, the TPS of the orchestration
system without the PLC holds 80.

Figure 12 explains the reason of different symptoms between the orchestration system without
the PLC and the proposed PLC-based orchestration system. As the number of concurrent users is
more than 280 users, the Non PLC-based system is in heavily overloaded state as to reach 100%
CPU usage. However, because the PLC-based system has the PLC mechanism, the proposed system
holds 92% CPU usage. The PLC-based system adds PLC mechanism to the hybrid orchestration
system so that it can prevent the performance instability caused by the request congestion.

Figure 13 shows the relationship between the over speed and the delay time after the saturation
point. This experimental result proves that the proposed delay time algorithm of the WorkerManager
has an effect on controlling the over speed. As the number of concurrent users is more than 220
users, the over speed frequently happens. Whenever the over speed happens, each Worker thread
sleeps for the delay time calculated by the WorkerManager. As the higher over speed happens, each
Worker thread sleeps for the more time so that the over speed steeply goes down. Although the over
speed steeply goes down, the delay time does not steeply go down due to the baseline delay value
0. As the baseline delay value is set 100 ms in this experiment, the delay time gradually goes down
until the 100 ms. As soon as the delay time passes 100 ms, the next delay time is directly set zero.

Figure 13 shows that the over speed does not happen until zero delay time due to the slope of
a downward curve. However, as soon as the delay time passes zero, the over speed again happens
and the next delay time controls the over speed. Although the heavy request congestion happens in
a BPEL Engine, the delay time-based PLC mechanism can prevent the thrashing state in overload
phase and help a BPEL Engine to execute stably the complex structured activities of WSBPEL
specification.
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Figure 13. Over speed control by the delay time algorithm.

6. FUTURE WORKS AND CONCLUSIONS

In this paper, we provide the hybrid service architecture model that can represent both Web Ser-
vices and existing EAs (i.e. legacy system) as partners in WSBPEL. This proposed hybrid service
architecture model can represent both Web Services and EA as same services in WSBPEL. As
an example, we show how Java RMI objects can be represented as services. In this paper, we
also describe the hybrid service orchestration system for supporting the hybrid service architecture
model. The orchestration system is composed of the BPEL Engine, the Hybrid Service Toolkit and
the Context Sharing Server. The hybrid service toolkit helps service providers to provide the hybrid
services and service clients to access hybrid services.

Moreover, in order to prevent the BPEL Engine’s thrashing caused by request congestion for a
short period of time, we provide the delay time-based PLC mechanism for solving RCs. In order
to calculate the delay time, the mechanism considers three following factors for calculating the
next delay time: over speed of transaction, baseline delay, and slope of a download curve. We also
apply the mechanism to the hybrid orchestration system in order to prove stable performance of the
proposed mechanism. According to our experimental results, the proposed delay time algorithm
can stably control the heavy overload after the saturation point and has an effect on controlling peak
load. In future works, we will research the dynamically changing optimal values, such as maximum
speed, baseline delay value 9, slope of a download curve f.
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